

Clark Dietrich. Spazzer® Spacer & Bridging Bar Design Tables

Sales: 800-543-7140

clarkdietrich.com

Technical Services: 888-437-3244 Engineering Services: 877-832-3206

Spazzer®	5400 Spacing	& Bridging Bar - 16GA (S	PZS-54) - Cor	nection Stre	ngth and Stif	fness					
Product	Stud Depth (in)	Allowable Capacities	Stud Thickness, mils (ga.)								
Code	Stud Deptii (iii)	Allowable Capacities	33 (20)	43 (18)	54 (16)	68 (14)					
		Brace Stiffness (lbs/in)	1320	1984	2792	3120					
	3-5/8	Brace Strength (lbs)	310	420	570	570					
		Torsional Moment (in-lbs)	325	400	535	630					
		Brace Stiffness (lbs/in)	920	1680	2240	2400					
SPZS-54	6	Brace Strength (lbs)	300	400	555	555					
SPZS-54		Torsional Moment (in-lbs)	265	365	610	705					
		Brace Stiffness (lbs/in)	-	1080	1440	2176					
	8	Brace Strength (Ibs)	-	395	525	525					
		Torsional Moment (in-lbs)	-	405	560	680					

Spazzer Bar Allowable Table Notes:

- Allowable loads are based on the use of cold-formed steel studs with a minimum yield strength, Fy=33 ksi and tensile strength, Fu=45 ksi for 43-mil (18-ga) or thinner and a minimum yield strength, Fy=50 ksi and tensile strength, Fu=65 ksi for 54 mil (16-ga) or thicker.
- Allowable loads are based on 54-mil (16-ga) 5400 Spazzer Bar with a minimum yield strength, Fy=50 ksi and tensile strength, Fu=65 ksi.
- Allowable loads are for the bridging connection only. The strength and serviceability of the framing members is the responsibility of the designer.
- Allowable loads may not be increased for wind or seismic load.
- Allowable loads are for use when using ASD design methodology. For LRFD loads, multiply ASD allowable loads by 1.6.
- Allowable brace loads are based on ultimate test loads divided by a safety factor. Serviceability limits are not considered. Brace stiffness requirements are detailed in AISI S100 Section D3.3.
- Axial brace stiffness values apply to both ASD and LRFD designs.
- Listed Spazzer Bar capacities are based on Spazzer Bar fully seated in the bottom of the stud knockout as shown in Figure-1.

Figure-1

Spazzer	Spazzer® 5400 Spacing & Bridging Bar - 16GA (SPZS-54) - Gross Properties														
Product	Design		Area			R _x (in)	l _y (in ⁴)	S _y (in³)	R _y (in)	Torsional Properties					
Code	Thickness			I _x (in ⁴)	S _x (in ³)					Jx1000	C _w	Yo	m	R _o	В
	(in)		(in)							(in⁴)	(in ⁶)	(in)	(in)	(in)	Р
SPZS-54	0.0566	50	0.140	0.0032	0.0111	0.1511	0.0586	0.0518	0.6481	0.1491	4.70E-09	0.2616	-0.014	0.715	0.866

Spazzer® 5400 Spacing & Bridging Bar - 16GA (SPZS-54) - Net Properties															
	Design		F _y (ksi) Area (in²) I _x	I _x (in ⁴)	S _x (in ³)	R _x (in)	l _y (in ⁴)	S _y (in³)	R _y (in)	Torsional Properties					
Product Code Th	Thickness	F _y (ksi)								Jx1000	C _w	Yo	m	R _o	В
	(in)	(11								(in ⁴)	(in ⁶)	(in)	(in)	(in)	В
SPZS-54	0.0566	50	0.090	0.0009	0.0045	0.0981	0.0158	0.0215	0.4192	0.09621	2.88E-09	0.16889	0.093	0.462	0.867

Spazzer® 5400 (SPZS-54) - Allowable Member Strengths											
Product Code	M _a (F _y) (in-lbs)	M _a (12"o.c.) (in-lbs)	M _a (16"o.c.) (in-lbs)	M _a (24"o.c.) (in-lbs)	P _a (12"o.c.) (lbs)	P _a (16"o.c.) (lbs)	P _a (24"o.c.) (lbs)				
SPZS-54	334	334	334	334	1362	1244	785				

[•] Net section properties are based on section that excludes material from slot/notch.

Member strengths analysis are based on AISI S100-12.

Clark Dietrich. Spazzer® Spacer & Bridging Bar Design Tables

Technical Services: 888-437-3244 Engineering Services: 877-832-3206 Sales: 800-543-7140 clarkdietrich.com

Spazzer® 5400 Spacing & Bridging Bar - 16GA (SPZS-54) - Maximum Bridging Distance (ft.)

		pacing & Bri	agın	ig Ba							mur	n Bri
Stud	Stud	Stud thickness,					Stud P					
Spacing, in	Section	mils (ga.)	5	10	15	20	25	30	35	40	45	50
		33 (20)	8	8	8	8	7	5	5	4	4	
	362S162	43 (18)	8	8	8	8	8	7 8	6 8	5 7	5 6	<u>4</u>
12		54 (16) 68 (14)	8	8	8	8	8	8	8	8	7	7
		33 (20)	8	8	8	6	5	4	4			
	362S200	43 (18)	8	8	8	8	6	5	4	4		
	3023200	54 (16)	8	8	8	8	8	7	6	5	5	4
		68 (14)	8	8	8	8	8	8	7	6	6	5
		33 (20)	<u>8</u> 8	8	8 8	8	6 8	5 7	4 6	<u>4</u> 5	 5	4
	600S162	43 (18) 54 (16)	8	8	8	8	8	8	8	8	8	7
		68 (14)	8	8	8	8	8	8	8	8	8	8
		33 (20)	8	8	8	6	5	4				
	600S200	43 (18)	8	8	8	8	7	5	5	4	4	
		54 (16)	8	8	8	8	8	8	8	7	6	6
		68 (14)	8	8	8	8	8	8	8	8 7	7 6	<u>6</u> 5
	800S162	43 (18) 54 (16)	8	8	8	8	8	8	8	8	8	8
	0000101	68 (14)	8	8	8	8	8	8	8	8	8	8
		43 (18)	8	8	8	8	8	7	6	5	4	4
	800S200	54 (16)	8	8	8	8	8	8	8	7	6	6
		68 (14)	8	8	8	8	8	8	8	8	8	7
		33 (20)	8 8	8	8	6 8	5 6	<u>4</u> 5	4	4		
	362S162	43 (18) 54 (16)	8	8	8	8	8	7	6	5	5	4
		68 (14)	8	8	8	8	8	8	7	6	5	5
	362S200	33 (20)	8	8	6	5	4					
		43 (18)	8	8	8	6	5	4				
		54 (16)	8	8	8	8	6	5	5	4	4	
		68 (14)	8	8	8	8 6	<u>8</u> 5	<u>6</u> 4	<u>5</u>	<u>5</u>	4	4
		33 (20) 43 (18)	8	8	8	8	7	5	5	4	4	
1.0	600S162	54 (16)	8	8	8	8	8	8	8	7	6	6
16		68 (14)	8	8	8	8	8	8	8	8	7	6
		33 (20)	8	8	6	4	4					
	600S200	43 (18)	8	8	8	6	5	4				
		54 (16)	8 8	8	8	8	8 8	7 8	6 7	5 6	5 5	<u>4</u> 5
		68 (14) 43 (18)	8	8	8	8	8	7	6	5	4	4
	800S162	54 (16)	8	8	8	8	8	8	8	7	6	6
	0003102	68 (14)	8	8	8	8	8	8	8	8	8	7
	800S200	43 (18)	8	8	8	7	6	5	4	4		
		54 (16)	8	8	8	8	8	7	6	5	5	4
		68 (14)	8	8	<u>8</u> 5	8	8	8	7	6	6	5
		33 (20) 43 (18)	8	8	7	5	4					
	362S162	54 (16)	8	8	8	7	6	5	4			
		68 (14)	8	8	8	8	7	5	5	4	4	
		33 (20)	8	6	4							
	362S200	43 (18)	8	8	5	4						
		54 (16)	8	8	7	5	4	4				
		68 (14)	8	8	<u>8</u> 5	6 4	<u>5</u>	4	4			
	6006165	33 (20) 43 (18)	8	8	7	5	4	4				
24	600S162	54 (16)	8	8	8	8	7	6	5	5	4	4
Z4		68 (14)	8	8	8	8	8	7	6	5	5	4
		33 (20)	8	6	4							
	600S200	43 (18)	8	8	5	4						
		54 (16)	8	8	8	7 8	6	<u>5</u>	<u>4</u> 5	4	4	
		68 (14) 43 (18)	8	8	8	7	5	4	4			
	800S162	54 (16)	8	8	8	8	8	6	5	5	4	4
		68 (14)	8	8	8	8	8	8	7	6	5	5
		43 (18)	8	8	7	5	4					
	800S200	54 (16)	8	8	8	7	6	5	4			
		68 (14)	8	8	8	8	7	6	5	4	4	

- Tabulated maximum bridging distances are for ASD lateral pressures.
- Tabulated maximum bridging distances are based on the tested connection strength.
- Studs must be checked for unbraced length seperately.
- Lateral pressures shall be determined based on the load combinations of the applicable building code.
- For designs using 2009 IBC and earlier, wind pressures are at the working stress level and may be used directly.
- For designs using 2012 IBC and 2015 IBC, wind pressures are at the strength level and must be multiplies by 0.6 for ASD load combinations.

Clark Dietrich. Spazzer® Bridging & Spacer Bar Design Tables

Sales: 800-543-7140

clarkdietrich.com

Technical Services: 888-437-3244 Engineering Services: 877-832-3206

Spazzer® 5400 Spacing & Bridging Bar - 16GA (SPZS-54) - Design Example

Example-1: Exterior Bearing-Wall Stud

Input

- 2012 IBC (ASCE 7-10 & AISI S100-2012)
- -600S162-43 (33-ksi) studs at 16" o.c., 10 ft. tall
- Bracing at 5-ft o.c. (Mid-point bracing)
- Nominal axial stud strength, Pn=5400 lbs (2013 AISI Manual, Table III-8)
- Distance from shear center to mid-plane of web, m=0.670-in (2013 AISI Manual, Table I-2)
- Wind Design Pressure = 20psf

Laterally-Loaded Stud Design

Design Load tributary to brace:

W=(0.6)(20psf)(16"/12")(5ft) = 80 lbs

Note-IBC 2015 load combinations for ASD include a factor of 0.6 for wind loads.

Required flange force (AISI S100 Eq. D3.2.1-3)

P = 1.5(m/d)W = 1.5(0.67/6)80 = 10.05 lbs

Torsional Moment

 $M_z = P(d) = 10.05(6) = 60.3 \text{ in-lbs}$

Moment applied to bridging member

 $M_m = 0.64(M_z) = 0.64*60.3 = 38.6 \text{ in-lbs}$

(Note: For 0.64 factor, refer AISI Design Guide D110-07 for analysis of a five-span continuous beam that is loaded with equal support moments)

From Allowable Loads Table for 6-in deep 43-mil stud,

Allowable Torsional Moment = 365 in-lbs > 60.3 in-lbs OK

Check member strength from allowable strengths table for 16" o.c.

Allowable moment = 334 in-lbs > 38.6 in-lbs OK

Axially-Loaded Stud Design

Required brace strength (AISI S100 Eq. D3.3-1)

P = 0.01(Pn) = 0.01(5400) = 54 lbs.

For ASD, divide by 1.5 (2012 AISI Cold-Formed Steel Design Manual, Pg. III-54)

(54)/(1.5) = 36.0 lbs.

Required brace stiffness (AISI S100 Eq. D3.3-2)

 $\beta = 2[4-(2/n)](Pn)/(L) = 2[4-(2/1)](5400)/(60) = 360 lbs/in$

From Allowable Loads Table for 6-in deep 43-mil stud,

Allowable brace strength = 400 lbs > 54 lbs. OK Brace stiffness = 2100 lbs/in > 360 lbs/in. OK

Combined-Loading Checks

Connection

 $P_{br}/P_{n} + M_{z}/M_{a} \le 1.0$ =54/400+60.3/365=0.30<1.0 OK

Bridging Member

 $\Omega_c P/P_n + \Omega_b M/M_n \le 1.0$

1.8*54/1413 + 1.67*38.6/558 = 0.184 < 1.0 OK