

F

S T I N G

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL18-292

CLIENT: ClarkDietrich

9050 Centre Pointe Drive, #400 West Chester, Ohio 45069 TEST DATE: 18 June 2018 25 June 2018

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at <u>www.astm.org</u>. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen was a single stud wall assembly constructed from 92 mm (3-5/8 inch) ClarkDietrich 20-gauge (33mils) structural steel studs with 92 mm (3-5/8 inch) ClarkDietrich 20-gauge (33mils) structural steel track, Owens Corning R-19 unfaced fiberglass batt insulation in the stud cavities, ClarkDietrich Acoustical Clips with 22 mm (7/8 inch) ClarkDietrich 25-gauge hat channel, and USG Sheetrock[®] Brand Firecode[®] Type 'C' gypsum board.

TEST CONFIGURATION

Source Room Layers	Source Room Resilient Clip	Stud Configuration	Receiving Room Layers		
		92 mm (3-5/8 inch) ClarkDietrich			
2 layers	ClarkDietrich Acoustical	20-gauge (33mils) structural steel	1 layer		
16 mm (5/8 inch)	Clips with	studs with 92 mm (3-5/8 inch)	16 mm (5/8 inch)		
USG Sheetrock [®] Brand	22 mm (7/8 inch)	ClarkDietrich 20-gauge (33mils)	USG Sheetrock [®] Brand		
Firecode [®] Type 'C'	ClarkDietrich 25-gauge hat	structural steel track with Owens	Firecode [®] Type 'C'		
gypsum board	channel	Corning R-19 unfaced fiberglass batt	gypsum board		
		insulation			

- The 92 mm (3-5/8 inch) ClarkDietrich 20-gauge (33mils) structural steel studs were spaced 610 mm (24 inches) on center (O.C.) and screwed into the ClarkDietrich 20-gauge (33mils) structural steel track with 12 mm (1/2 inch) truss screws. Owens Corning R-19 unfaced fiberglass batt insulation was installed in the stud cavities. The frame was isolated from the test opening with 6 mm (1/4 inch) neoprene pads.
- On the source side, ClarkDietrich Acoustical Clips were screwed to the studs using 64 mm (2-1/2 inch) #8 screws. The clips were installed 76 mm (3 inches) from the top and bottom of the wall with a maximum spacing of 1219 mm (48 inches) O.C. laterally and a maximum spacing of 610 mm (24 inches) vertically.
- On the source side, 22 mm (7/8 inch) ClarkDietrich 25-gauge hat channel was installed into the sound isolation clips.
- On the source side, two layers of 16 mm (5/8 inch) USG Sheetrock[®] Brand Firecode[®] Type 'C' gypsum board were screwed to the hat channel. The first layer was screwed using 25 mm (1 inch) long #6 drywall screws spaced 406 mm (16 inches) O.C. along the channel. The second layer was screwed using 41 mm (1-5/8 inch) long #6 drywall screws spaced 406 mm (16 inches) O.C. along the channel with joints offset 406 mm (16 inches). The gypsum board was oriented horizontally.

Report must be distributed in its entirety except with written permission from Western Electro-Acoustic Laboratory $Page \ 1 \ of \ 3$

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

CALIBRATION • RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL18-292

CLIENT: ClarkDietrich

9050 Centre Pointe Drive, #400 West Chester, Ohio 45069

TEST DATE: 18 June 2018

- On the receiving side, one layer of 16 mm (5/8 inch) USG Sheetrock[®] Brand Firecode[®] Type 'C' gypsum board was screwed to the studs using 25 mm (1 inch) long #6 drywall screws spaced 406 mm (16 inches)
 O.C. along the perimeter and in the field. The gypsum board was oriented vertically.
- All gypsum board joints were staggered on opposite sides. All the gypsum board joints were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- On both sides around the perimeter of the assembly, a 6 mm (1/4 inch) gap was maintained and sealed with a bead of latex caulking and metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 181 mm (7-1/8 inches) thick.
- The overall weight of the assembly was estimated to be 254 kg (560 lbs.) for a calculated surface density of 42.7 kg/m² (8.7 lbs./ft²).

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC-48. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC-62.

Approved:

Stephen A. Martin, Ph.D., P.E. Laboratory Director

Respectfully submitted, Western Electro-Acoustic Laboratory

Raul Martinez Acoustical Test Technician

25 June 2018

ΤЕ

STING

WESTERN ELECTRO - ACOUSTIC LABORATORY

• RESEARCH

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

CALIBRATION

SOUND TRANSMISSION LOSS TEST REPORT NO. TL18-292

CLIENT: ClarkDietrich

9050 Centre Pointe Drive, #400 West Chester, Ohio 45069 TEST DATE: 18 June 2018

٠

25 June 2018

FREQUENCY IN HERTZ

1/3 OCT BAND CNTR FREQ		63	80	100	125	160	200	250	315	400	500	
TL in dB		19	31	37	43	47	52*	57*	59*	60*	63*	
95% Confidence in dB		1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38	
deficiencies					(3)	(2)	(0)			(1)		
1/3 OCT BAND CNTR FREQ		630	800	1000	1250	1600	2000	2500	3150	4000	5000	
TL in dB		65*	68*	68*	67	65	58	65	67	66	63	
95% Confidence in dB		0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50	
deficiencies						(1)	(8)	(1)		(0)		
EWR	OITC	* Minimum estimate of	Test Date: 18 June 2018									STC
64	48	transmission loss. Measurement limited by	Specimen Area: 64 sq.ft.								62	
		filler wall. Actual TL will be equal or		Temperature:			76.6 deg. F					
greater than value reported.			Rela	tive Hu	midity:	43 %						

Report must be distributed in its entirety except with written permission from Western Electro-Acoustic Laboratory Page 3 of 3

