Tested, approved assemblies with unprecedented flexibility.

What makes the ClarkDietrich shaftwall construction system unique is that it has been tested with almost every gypsum board and shaftliner manufacturer in the country. Other systems may only test with one type of gypsum board and shaftliner. Unlike competing systems, the ClarkDietrich C-T stud and J-Tabbed track system provide maximum flexibility, allowing you to choose from a variety of board manufacturers. This unprecedented flexibility means quick availability of product at economical costs.

Shaftwall System consists of 1” shaftliner panels supported by 2-1/2”, 4” or 6” C-T studs and faced on one side with varying layers of 1/2” Type C or 5/8” Type X gypsum board.

Stairwall Systems are designed to enclose stairwalls, and are finished on both sides with varying layers of 1/2” Type C or 5/8” Type X gypsum board.

Gypsum shaftwall assemblies can be installed from the exterior of the shaft at each floor, eliminating the need for scaffolding within the shaft.

LIFE SAFETY & FIRE-RESISTANT PROTECTION

Shaftwall systems are non-load bearing, fire-rated wall assemblies that provide critical, life safety, fire-resistance protection for elevator shafts, stairwells, vertical chases and mechanical enclosures. Shaftwalls in elevators and stairwells provide protection for the only means of evacuation from the building in an emergency—making them one of the most important wall assemblies in a building. Vertical chases and mechanical enclosures keep vital communication, power, water, fresh air and exhaust systems intact when a fire occurs.

CONSTRUCTION METHODS

Cavity shaftwalls are constructed utilizing one of two methods: masonry/CMU or light-gauge steel and gypsum. Gypsum drywall shaftwall construction has become the preferred and most widely used method of construction for shaftwalls. These shaftwalls are lightweight, install faster, and provide lower in-place costs. They also significantly reduce structural framing and foundation costs, and are easy, quick and clean to install.

Masonry shaftwalls in high-rise buildings historically weigh between 20 and 45 lbs. per square foot, compared to gypsum assemblies that weigh between 10 and 13 lbs. per square foot, thus achieving a substantial weight reduction.
ClarkDietrich Slotted C-T Studs and J-Tabbed Track.

Slotted C-T Shaftwall/Stairwell framing members and J-Tabbed track are interior framing members manufactured in accordance with ASTM C645 from cold-formed galvanized steel conforming to ASTM A1003, or other steel complying with AISI Specifications having a minimum yield strength of 33,000 or 50,000 psi. The galvanization coating shall be an ASTM A653-G40 or shall provide equivalent corrosion protection as permitted in specification ASTM C645.

The C-T stud provides a cavity for services. The stud has 1” circular cutouts approximately 12” o.c. for horizontal service lines. Studs are friction-fitted between top and bottom of the J-Tabbed tracks. Use J-Tabbed tracks for all closure details, including duct and door openings, abutments, intersections, etc. This system has been designed with only two components for convenience of installation. No other special metal components are required. Studs are automatically spaced 24” o.c. maximum once 1” shaftliner panels are friction fit snugly into studs.

C-T Cavity Shaftwall System limiting heights are acceptable for use with the following manufacturers: American Gypsum; CertainTeed Corporation; Continental Building Products; Georgia-Pacific Gypsum; National Gypsum; PABCO Gypsum; and United States Gypsum.

Check the specific fire or sound assembly to be constructed for the details required to achieve the desired rating.

ClarkDietrich Slotted C-T Studs and J-Tabbed Track

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Thickness</th>
<th>Design Thickness (in)</th>
<th>Stud Depth (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250CT-21</td>
<td>25</td>
<td>21</td>
<td>0.0231</td>
</tr>
<tr>
<td>250CT-33</td>
<td>20</td>
<td>33</td>
<td>0.0346</td>
</tr>
<tr>
<td>250CT-43</td>
<td>18</td>
<td>43</td>
<td>0.0451</td>
</tr>
<tr>
<td>400CT-21</td>
<td>25</td>
<td>21</td>
<td>0.0231</td>
</tr>
<tr>
<td>400CT-33</td>
<td>20</td>
<td>33</td>
<td>0.0346</td>
</tr>
<tr>
<td>400CT-43</td>
<td>18</td>
<td>43</td>
<td>0.0451</td>
</tr>
<tr>
<td>600CT-33</td>
<td>20</td>
<td>33</td>
<td>0.0346</td>
</tr>
<tr>
<td>600CT-43</td>
<td>18</td>
<td>43</td>
<td>0.0451</td>
</tr>
</tbody>
</table>

J-TABBED TRACK/J-RUNNER

ClarkDietrich J-Tabbed track is used at the floor and ceiling in shaftwall assemblies. C-T studs and gypsum shaftliner panels are friction fit between the top and bottom J-Tabbed track. J-Tabbed tracks have unequal legs with the longer leg (available in 2-1/4” and 3”) installed toward the shaft. The leg provides a backstop for easy installation of the shaftliner. Three-inch leg track is typically used as jamb struts around closure details, including duct and door openings, abutments and intersections.

ClarkDietrich J-Tabbed track is punched with fold-up tabs every 12”, permitting faster, more efficient installation and eliminates the need for additional screws.

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Thickness</th>
<th>Design Thickness (in)</th>
<th>Width</th>
<th>Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>250JR-21</td>
<td>25</td>
<td>21</td>
<td>0.0230</td>
<td>2-1/2</td>
</tr>
<tr>
<td>250JR-33</td>
<td>20</td>
<td>33</td>
<td>0.0346</td>
<td>2-1/2</td>
</tr>
<tr>
<td>400JR-21</td>
<td>4</td>
<td>21</td>
<td>2-1/4</td>
<td>3</td>
</tr>
<tr>
<td>400JR-33</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250JR-33</td>
<td>20</td>
<td>33</td>
<td>0.0346</td>
<td>4</td>
</tr>
<tr>
<td>400JR-33</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600JR-33</td>
<td>6</td>
<td>2-1/4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>250JR-43</td>
<td>20</td>
<td>43</td>
<td>0.0451</td>
<td>2-1/2</td>
</tr>
<tr>
<td>250JR-43</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400JR-43</td>
<td>4</td>
<td>2-1/4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>600JR-43</td>
<td>6</td>
<td>2-1/4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*3 designates 3” leg.

NOTE: 18ga only available in select markets. 18ga is for interior systems only.
SHAFTWALL
A 2-hour fire-resistive, non-load bearing non-combustible partition designed to enclose shaftwalls, containing elevators, ducts, piping, air shafts and similar construction applications.

System consists of 1” shaftliner panels supported by 2-1/2”, 4” or 6” C-T studs and faced on one side with two layers of 1/2” Type C or 5/8” Type X gypsum board.

HELPFUL HINTS
- Precut C-T studs 3/4” less than the opening’s height between top and bottom J-Tabbed track.
- In structural steel-frame construction, install perimeter J-Tabbed track sections before applying spray-on fireproofing.
- Items to be anchored to the wall (cabinets, sinks, handrails, etc.) should be fastened to steel plates secured behind or between layers of gypsum.
- Use Type S screws for 25ga steel framing. Use Type S-12 screws for 20ga (or heavier) steel framing.
- It is important that the authority having jurisdiction approve the type, size, and maximum spacing of track fasteners to meet the design load requirements.
- 18ga C-T studs are for interior systems only.

LIMITATIONS OF USE
- Shaftwall assemblies are designed as simple span non-load bearing interior partitions only. Do not stack walls.
- Do not install in areas which will be adjacent to occupancies of unusually high moisture conditions.
- Provide control joints so that maximum length of continuous partition is 30 feet. Wherever possible, the partition control joints should coincide with those in the building structure.
- Elevator door frames should be supported independently of the shaftwall. However, interfacing of elevator frame to shaftwall system may require attachment with jamb clips and/or grouting.
- Where penetrations occur in the partitions, additional reinforcement at corners may be necessary to distribute stresses if control joints are not used and if excessive loads need to be supported.
- To prevent air movement and resulting "whistling", the partition perimeters, as well as all penetrations, should be sealed with a non-hardening sealant.
- Finishing of all joints in face layers should be done within temperature limitations of the specific joint treatment used.
- Not recommended for use as an unlined HVAC supply shaft or duct.
- Hollow cavities must be fire stopped at each floor.
- Do not splice C-T studs or J-Tabbed tracks.
1. Layout per construction drawings. Secure J-Tabbed track at perimeter framing and plumb to ceiling, floor and sides. Attached with suitable fasteners, spaced not more than 24” o.c. Apply a bead of non-hardening, flexible sealant to the perimeter.

2. Pre-plan the stud layout 24” o.c. and adjust the spacing at either end so the end studs will not fall closer than 12” from the end.

3. Maximum spans are as shown on page 7.

4. Erect the first 1” Shaftliner panel, cut 3/4”-1” less than the total height of the framed section. Plumb the panel against the web of the J-Tabbed track and bend out tabs in J-Tabbed track to secure panels in place. If tabs are not used, screw the liner panel to the J-Tabbed track.

5. Insert C-T stud, cut 3/4” less than overall height, into the top and bottom J-Tabbed tracks and fit tightly over previously installed 1” panel. Allow equal clearance between top and bottom J-Tabbed track.

6. Install the next 1” Shaftliner inside the J-Tabbed track and within the tabs of the C-T stud.

7. Progressively install succeeding studs and panels as described above until the wall section is enclosed. The final panel section may be secured with tabs from the J-Tabbed track at 12” o.c. If tabs are not used, screw the liner panel to the J-Tabbed track.

8. Where wall heights exceed the standard or available length of shaftliner panels, the panels may be cut and stacked with joints occurring within the top or bottom third points of the wall. Joints of adjacent panels should be alternately staggered to prevent a continuous horizontal joint. Any butt joints must be factory edge to factory edge with pieces pushed tightly together. Gypsum panels must engage a minimum of 2 tabs of the C-T stud.

9. C-T studs cannot be spliced. They must be installed full height, one piece. J-Runners when not attached to the structure shall not be spliced.

10. Do not attach J-Runners to the C-T studs.

11. For doors, ducts or other large penetrations or openings, install J-Tabbed track as perimeter framing. Use 20 gauge track with a 3’ back leg for elevator doors and block cavity with 12” wide gypsum filler strips for doors exceeding 7’-0” height.

Note: Check details of fire assembly for orientation and attachment details for gypsum boards.

LOCATION OF GYPSUM BOARD JOINTS

1. Shaftliner panels may be abutted (spliced or stacked) within the cavity as shown in the drawing above. The shorter panel should be at least two feet long or of sufficient length to engage two stud tabs on each panel edge. NOTE: In addition, some local codes may also require that these splices be back-blocked with a 12” x 24” piece of gypsum even though the tests were preformed with these joints unblocked. Also, back blocking may be done with a C-T stud of proper length and placed horizontal. Please check with your local jurisdiction.

2. For the shaftwall system, finished one side, install the first layer of 1/2” Type C or 5/8” Type X gypsum board horizontally with 1” Type S screws spaced 24” o.c. and 3” from all edges. The horizontal joints must be offset from any splice joints in the shaftliner panels by at least 12”.

3. Install the face layer of board parallel to framing with 1-5/8” Type S screws spaced 12” o.c. at all framing members maintaining a 6” edge distance. All edge and end joints should be offset from the base layer by 24”.

4. For the stairwall system, finished both sides, each side must be installed vertically with 1” Type S screws spaced 12” o.c. maintaining a 3” distance from edge. Offset edges and ends on opposite sides 24” o.c.

5. Caulk all perimeter edges and abutments with dissimilar materials, and penetrations in the facing layers with a non-hardening flexible sealant approved for this use.

6. All joints on face layers are to be tapered and finished and fastener heads finished with joint compounds meeting ASTM C475 specification.
1. Horizontal ceiling applications are not designed for any live load, mechanical equipment, or for any storage load.

2. Maximum spans are as shown on page 7.

3. The corridor ceiling or stair soffit horizontal assembly is constructed from the floor.

4. J-Tabbed track (Item 1) is first secured to all corridor walls or stair stringer framing around the perimeter of the ceiling or stair soffit to be protected.

5. The J-Tabbed track (Item 1) will be at a minimum:
 a. 33mil, 0.0346in (20ga) thickness for 25ga and 20ga C-T studs (Item 3)
 b. 43mil, 0.0451in (18ga) thickness for 18ga C-T studs (Item 3)

6. The J-Tabbed track (Item 1) is positioned with the shorter 1 inch long leg of the track facing the floor.
 a. Fasteners are placed through the web of the J-Tabbed track to the supporting structure.
 b. Mechanical fasteners shall be spaced a maximum of 24in o.c. along the length of the J-Tabbed track to the supporting structure.
 c. The track to perimeter wall connection (Item 5) shall be detailed by the designer to provide a minimum of 200 lbs. of shear capacity for every C-T stud location.

7. 1 inch (thick) x 24 inches (wide) gypsum shaftliner panels (Item 4) are inserted in the J-Tabbed track (Item 1) towards the ceiling (2 inch leg of the J-Tabbed track).
 a. Measure the overall dimensions of the opening and determine if the first 1 inch shaftliner installed should be cut lengthwise so that the final shaftliner panel is not less than 8 inch in width.
 b. The first liner panel will be secured to the J-Tabbed track by using #6 x 1-5/8" drywall screws 12in o.c. and at each end through the longer leg of the J-Tabbed track.

8. C-T stud (Item 3) of the required depth and thickness will be positioned so that it secures the free edge of the first shaftliner panel within the "T" portion of the C-T stud.

9. Do not splice C-T studs. Use only full length pieces of the proper length.

10. Both ends of the C-T stud (Item 3) will be secured to both flanges of the J-Tabbed track using a minimum 1/2" long #8 pan-head screw (Item 6).

11. The sequence of alternating placement of shaftliner panels (Item 4) and C-T studs (Item 3) will continue with each C-T stud engaging the long edges of the 1 inch shaftliner panels.

12. The end of each 1 inch shaftliner panel within the perimeter J-Tabbed track is fastened to the J-Tabbed track flange with three #6 x 1 5/8" Type S screws (12in o.c.).

13. Liner panels may be cut; butt the factory ends of the liner panels. The butt joints shall occur within the outermost one third points of the span. Joints in adjacent liner panels shall be alternately staggered to prevent a continuous joint.

14. Secure the last liner panel to the J-Tabbed track by using #6 x 1-5/8" drywall screws 12in o.c. and at each end through the longer leg of the J-Tabbed track.

15. For a two-hour assembly two layers of 1/2" Type C or 5/8" Type X gypsum board (Item 2) should be installed at right angles to the framing members. Install the inner layer with #6 (Item 7) x 1" Type S drywall screws, 24in o.c., starting 3" maximum from the ends of the C-T studs. Butt joint of adjacent panels should be centered on a stud flange. Install the outer layer of 1/2" Type C or 5/8" Type X gypsum board with #6 (Item 7) x 1-5/8" Type S drywall screws, 12in o.c. in the field and at the perimeter. Offset the board joints a minimum of one stud spacing (24") between layers.

16. Caulk the perimeter edges and abutments with dissimilar materials and any penetrations with a non-hardening flexible sealant (Item 8).

17. All joints on the outer layer shall be taped and finished and fastener heads finished with joint compounds meeting ASTM C475.

Figure 1 - Two (2) Hour Assembly

Figure 2 - C-T Stud to J-Tabbed Track Connections
LIMITING HEIGHTS TABLE

C-T STUD LIMITING HEIGHTS : PER ICC-ES AC 86 1995

<table>
<thead>
<tr>
<th>Stud Depth</th>
<th>Gauge</th>
<th>Yield Strength (psi)</th>
<th>Design Thickness (in)</th>
<th>Design Deflection Limit</th>
<th>Limiting Height (feet - inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 psf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5 psf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 psf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 psf</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>25</td>
<td>33,000</td>
<td>0.0231</td>
<td>L/120</td>
<td>16' 10"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13' 8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11' 10" **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' 6" **</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>33,000</td>
<td>0.0346</td>
<td>L/120</td>
<td>16' 10"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14' 4"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12' 1"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11' 1"</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>50,000</td>
<td>0.0451</td>
<td>L/120</td>
<td>17' 11"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15' 10"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14' 6"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12' 10"</td>
</tr>
<tr>
<td>4"</td>
<td>25</td>
<td>33,000</td>
<td>0.0231</td>
<td>L/120</td>
<td>21' 8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16' 6" **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12' 5" **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' 3" **</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>33,000</td>
<td>0.0346</td>
<td>L/120</td>
<td>21' 0"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17' 9"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15' 10"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13' 6" **</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>50,000</td>
<td>0.0451</td>
<td>L/120</td>
<td>25' 7"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22' 2"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17' 4" **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15' 1" **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14' 3" **</td>
</tr>
<tr>
<td>6"</td>
<td>20</td>
<td>33,000</td>
<td>0.0346</td>
<td>L/120</td>
<td>36' 5"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30' 8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27' 3" **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23' 2" **</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>50,000</td>
<td>0.0451</td>
<td>L/120</td>
<td>36' 5"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30' 8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27' 3" **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23' 2" **</td>
</tr>
</tbody>
</table>

*18ga only available in select markets. (18ga is for interior systems only.)

Note:
1. *Reduced for End Reaction Capacity. ** Reduced for Flexural Strength Capacity.
2. The values in this table are based on testing per ICC-ES AC 86 and ASTM E72 and represent the limiting height capacity for strength using a 1.5 Safety Factor.
3. Minimum base steel thickness is 95% of design thickness.
4. Limiting Height values shown, were assessed from the lowest Flexural Strength value of Gypsum tested.

HORIZONTAL SPANS

MAXIMUM HORIZONTAL SPANS FOR CORRIDOR CEILINGS AND STAIRWAY SOFFITS

<table>
<thead>
<tr>
<th>Stud Depth</th>
<th>Gauge</th>
<th>Yield Strength (psi)</th>
<th>Design Thickness (in)</th>
<th>Design Deflection Limit</th>
<th>2 Hour (1) 1/2" Type C + (1) 1-in Shaftliner</th>
<th>2 Hour (2) 5/8" Type X + (1) 1-in Shaftliner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L/120</td>
<td>L/180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L/240</td>
<td>L/360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L/120</td>
<td>L/180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L/240</td>
<td>L/360</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>25</td>
<td>33,000</td>
<td>0.0231</td>
<td>8' 8"</td>
<td>8' 8"</td>
<td>8' 8"</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>33,000</td>
<td>0.0346</td>
<td>10' 6"</td>
<td>10' 6"</td>
<td>10' 6"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9' 10"</td>
<td>8' 7"</td>
<td>8' 7"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8' 10"</td>
<td>11' 0"</td>
<td>11' 0"</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>50,000</td>
<td>0.0451</td>
<td>18' 9"</td>
<td>18' 9"</td>
<td>18' 9"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18' 9"</td>
<td>16' 10"</td>
<td>16' 10"</td>
</tr>
<tr>
<td>4"</td>
<td>25</td>
<td>33,000</td>
<td>0.0231</td>
<td>11' 8"</td>
<td>11' 8"</td>
<td>11' 8"</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>33,000</td>
<td>0.0346</td>
<td>14' 3"</td>
<td>14' 3"</td>
<td>14' 3"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14' 1"</td>
<td>12' 4"</td>
<td>12' 4"</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>50,000</td>
<td>0.0451</td>
<td>19' 1"</td>
<td>16' 8"</td>
<td>16' 8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19' 2"</td>
<td>13' 3"</td>
<td>13' 3"</td>
</tr>
<tr>
<td>6"</td>
<td>20</td>
<td>33,000</td>
<td>0.0346</td>
<td>18' 9"</td>
<td>18' 9"</td>
<td>18' 9"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18' 9"</td>
<td>16' 10"</td>
<td>16' 10"</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>50,000</td>
<td>0.0451</td>
<td>22' 9"</td>
<td>22' 9"</td>
<td>22' 9"</td>
</tr>
</tbody>
</table>

*18ga only available in select markets. (18ga is for interior systems only.)

Note:
1. Dead Load of assembly ONLY is considered.
2. Not designed to carry any Live Loads, Mechanical equipment, Storage Loads or Lighting.
3. Studs must be one piece, full span.
4. Minimum base steel thickness is 95% of design thickness.

clarkdietrich.com

The technical content of this literature is effective 04/09/20 and supersedes all previous information.

Pub. No. CD-SHAFTWALL 04/20
ClarkDietrich Design No. CD/WA 120-01 Wall Assembly

DESIGN NO. CD/WA 120-01
ASSEMBLY RATING - 2 HOURS, NON-BEARING SHAFTWALL, DESIGN WEIGHT - 8.5 PSF

<table>
<thead>
<tr>
<th>STC</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>As shown below.</td>
</tr>
<tr>
<td>44</td>
<td>As shown below and with 1-1/2" thick, 3PCF, mineral fiber insulation in cavity.</td>
</tr>
<tr>
<td>53</td>
<td>As shown and with 1-1/2" thick, 3 PCF, mineral fiber insulation in cavity and with ClarkDietrich 1/2" resilient channels, 24" o.c. and at right angles to studs under 1/2" or 5/8" Gypsum Board Base Layer.</td>
</tr>
</tbody>
</table>

1. **Floor, Ceiling, Corner and Intersection Runners**: "J" shaped runner with unequal legs, 2-1/2" minimum deep, fabricated from minimum 0.019" thick galvanized steel. Position runners with short leg towards room side of wall. Runners attached to structural members with steel fasteners located not greater than 24" o.c. Runners are manufactured by ClarkDietrich Building Systems.

2. **Steel Studs**: "C-T" shaped slotted web studs, 1-1/2" wide by 2-1/2" minimum deep, fabricated from minimum 0.019" thick galvanized steel. Cut to length 1/2" less than the opening's height and spaced 24" maximum o.c. and between 1" thick gypsum shaftliner panels. Studs are manufactured by ClarkDietrich Building Systems.

3. **Gypsum Shaftliner**: 1" thick Georgia-Pacific Gypsum LLC Shaft Liner Type X*, Georgia-Pacific Gypsum LLC DensGlass Ultra Shaft Liner Type X*, Gold Bond Shaftliner, James Hardie Gypsum Hardierock Type X Shaftliner*, Continental Building Products Firecheck Shaftliner* or USG Shaft Wall Liner, supplied in nominal 24" widths. The panels are inserted against the long leg of the 'J' runners and into the 1" deep recess of the studs. Free edges of end panels are retained by bending 'J' runner tabs (12" o.c.) at a 90° angle.

4. **Gypsum Board**: 1/2" thick Georgia-Pacific Gypsum LLC Fireguard C, Georgia-Pacific Gypsum LLC DensArmor Plus Fireguard C*, Gold Bond Fireshield Wall Board G, James Hardie Gypsum Superfire X Hardierock, Continental Building Products Firecheck Type C, USG Firecode C Sheetrock or 5/8" thick Type X Gypsum applied in two layers on the room side. The base layer is applied horizontally with 1" drywall screws 24" o.c., starting 3" from the top and bottom. Face layer is applied vertically with 1-5/8" screws 12" o.c., starting 6" from the top and bottom. Outer layer joints are finished with paper tape and joint compound. Exposed screw heads are finished with joint compound.

Limitations: Gypsum Shaftliner and Gypsum Board must be by same manufacturer. Heights shall not exceed those in the table within these listings.

*Component bearing the Warnock Hersey Certification Mark, manufacturing information of these components is proprietary to the listed component's manufacturer.
ClarkDietrich Design No. CD/WA 120-02 Wall Assembly

DESIGN NO. CD/WA 120-02
ASSEMBLY RATING - 2 HOURS, NON-BEARING STAIRWALL, DESIGN WEIGHT - 8.5 PSF

<table>
<thead>
<tr>
<th>STC</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>As shown below.</td>
</tr>
<tr>
<td>43</td>
<td>As shown below and with 1-1/2” thick, 3 PCF, mineral fiber insulation in cavity.</td>
</tr>
<tr>
<td>51</td>
<td>As shown below and with 1-1/2” thick, 3 PCF, mineral fiber insulation in cavity and with ClarkDietrich 1/2” resilient channels, 24” o.c. and at right angles to cavity side of studs under room side 1/2” or 5/8” Gypsum Board.</td>
</tr>
</tbody>
</table>

1. **Floor, Ceiling, Corner and Intersection Runners**: 'J' shaped runner with unequal legs, 2-1/2” minimum deep, fabricated from minimum 0.019” thick galvanized steel. Position runners with short leg towards cavity side of wall. Runners attached to structural members with steel fasteners located not greater than 24” o.c. Runners are manufactured by ClarkDietrich Building Systems.

2. **Steel Studs**: 'C-T' shaped slotted web studs, 1-1/2” wide by 2-1/2” minimum deep, fabricated from minimum 0.019” thick galvanized steel. Cut to length 1/2” less than the opening's height and spaced 24” maximum o.c. and between 1” thick gypsum shaftliner panels. Studs are manufactured by ClarkDietrich Building Systems.

3. **Gypsum Shaftliner**: 1” thick Georgia-Pacific Gypsum LLC Shaft Liner Type X*, Georgia-Pacific Gypsum LLC DensGlass Ultra Shaft Liner Type X*, Gold Bond Shaftliner, James Hardie Gypsum Hardierock Type X Shaftliner*, Continental Building Products Firecheck Shaftliner*, or USG Shaft Wall Liner, supplied in nominal 24” widths. The panels are inserted against the long leg of the 'J' runners and into the 1” deep recess of the studs. Free edges of end panels are retained by bending 'J' runner tabs (12” o.c.) at a 90° angle.

4. **Gypsum Board**: 1/2” thick Georgia-Pacific Gypsum LLC Fireguard C, Georgia-Pacific Gypsum LLC DensArmor Plus Fireguard C*, Gold Bond Fireshield Wall Board G, James Hardie Gypsum Superfire X Hardierock, Continental Building Products Firecheck Type C, USG Firecode C Sheetrock or 5/8” thick Type X Gypsum, applied vertically to both sides of the studs with joints offset and attached with 1” drywall screws 12” o.c. starting 6” from the top and bottom. All joints are finished with paper tape and joint compound.

Limitations: Gypsum Shaftliner and Gypsum Board must be by the same manufacturer. Height shall not exceed those in the table within these listings.

*Component bearing the Warnock Hersey Certification Mark, manufacturing information of these components is proprietary to the listed component's manufacturer.
CONSTRUCTION DETAILS

DOOR OPENING ROOM SIDE

- **Detail 1**: Studs @ 24” o.c.
- **Detail 2**: Pan-Head Screws on both sides of all metal intersections
- **Detail 3**: J-Tabbed Track

Diagram

- J-Tabbed Track
- Screw at each side

Pub. No. CD-SHAFTWALL 04/20

The technical content of this literature is effective 04/09/20 and supersedes all previous information.
CONSTRUCTION DETAILS

CROSS SECTION

J-Tabbed Track 20 gauge or heavier

Jamb trim grouted in place and/or attached to J-Tabbed Track with jamb anchor clips

Solid gypsum filler strips required for frames over 7'0"

J-Tabbed Track

CONSTRUCTION DETAILS

JAMB DETAIL

J-Tabbed Track 20 gauge or heavier

Gypsum filler strips may be required where jambs are in place prior to wall construction

INSIDE CORNER

Attached to J-Tabbed Track prior to installation

Tabs in J-Tabbed Track bent out at 12" o.c.

OUTSIDE CORNER

Tabs in J-Tabbed Track bent out at 12" o.c.

Corner bead
Mechanical Penetrations

Duct Opening Room Side

- J-Tabbed Track
- Studs @ 24” o.c.
- Pan-Head Screws on both sides of all metal openings
- J-Tabbed Track

Alternate Duct Details

- Friction-fitted mineral wool or gypsum board
- J-Tabbed Track
- C-T Stud
- Duct Sides

Top

- J-Tabbed Track
- 1” Shaftliner Panel
- 1/2” Type C or 5/8” Type X Gypsum Board
- Fasteners at 24” o.c.
- Tabs bent out at 12” o.c.

Base

- J-Tabbed Track
- Sealant

End Condition

- J-Tabbed Track
- 1” Shaftliner Panel
- 1/2” Type C or 5/8” Type X Gypsum Board
- Sealant
AREA SEPARATION WALL SYSTEMS

Fire-resistance protects lives and property.

Area separation walls are non-load bearing, 2-hour and 3-hour rated vertical wall assemblies that provide fire-resistant protection between adjacent living units in apartment buildings, condominiums and townhouses. They are also referred to as party walls, firewalls, multi-family walls and H-stud assemblies.

Assembled between two independent walls, area separation walls form a commonly shared party wall that extends from the foundation through the roofline. The walls are assembled with two 1” thick gypsum panel liners vertically installed between 2” H-studs spaced 24” o.c. At the top and bottom of the walls, C-runners are installed back-to-back between vertically stacked panels. Overall stacked area separation wall assemblies cannot exceed 50 feet or the limits of the applicable UL Fire Assembly.

H-STUD

ClarkDietrich H-studs are nominal 2” wide vertical members used to secure two 1” thick pieces of gypsum shaftliner in area separation wall assemblies. H-studs are inserted into C-runners and slid over gypsum panel liner edges, repeating until the desired wall length is achieved. Once the wall is plumbed, it is secured with aluminum burn clips.

<table>
<thead>
<tr>
<th>Product code</th>
<th>Thickness (in)</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSN</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-RUNNER

ClarkDietrich C-runner is used to secure H-stud and gypsum shaftliner panels in area separation wall assemblies. Attached to the foundation with power-actuated fasteners, C-runner is also used as top track to cap the H-stud and 1” gypsum shaftliner panels, with a second track screwed back-to-back to the lower runner, to hold the next level of assembly.

<table>
<thead>
<tr>
<th>Product code</th>
<th>Thickness (in)</th>
<th>Size (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRN1</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALUMINUM BURN CLIP

ClarkDietrich aluminum burn clips are used as part of the H-stud area separation wall assembly and are designed to melt when exposed to fire. The clips hold the area separation wall assemblies in place at the floor, roof and truss line between adjacent units. In a fire, the aluminum burn clips on the fire-ridden side of the wall will melt, allowing the wall structure for that side to collapse.

<table>
<thead>
<tr>
<th>Product code</th>
<th>Thickness (in)</th>
<th>Size (in)</th>
<th>Packaging Pcs./Bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.050</td>
<td>2 x 2 x 2-1/2</td>
<td>500</td>
</tr>
<tr>
<td>AB63</td>
<td>0.063</td>
<td>2 x 2 x 2-1/2</td>
<td>250</td>
</tr>
<tr>
<td>AB40*</td>
<td>0.063</td>
<td>2 x 2 x 4</td>
<td></td>
</tr>
</tbody>
</table>

*For use with 3-hour Design Assembly based on GA File No. ASW 2600 other custom breakaway clip lengths available.

Note: Check listed fire assembly for details of construction, thickness and length of required burn clips.

clarkdietrich.com
INSTALLATION PROCEDURES

1. Install C-runner along the floor in the desired position.
2. An additional track is installed vertically at the end of the wall.
3. Two 1” thick shaftliner panels are then inserted into the bottom and side tracks.
4. An H-stud is inserted into the lower track and slid over the edges of the shaftliner.
5. Repeat steps 3 and 4 until the desired wall length is achieved.
6. Cap the end and top of the wall with C-runner.
7. Confirm that the wall is plumb and then secure the assembly to the adjacent wall using aluminum burn clips on both sides of the wall. Make sure to leave a 3/4” gap between the area separation wall and adjacent wall. Clip spacing is dependent on the height of the wall. Wall assemblies can be stacked to a maximum height of 50’ or per the details of the applicable UL assembly.

NOTE: Check listed Fire Assembly for details of construction, thickness and length of required burn clips.

Conforms to the following UL Assemblies:
- UL U336
- UL U347
- UL U366
- UL U375

ALUMINUM BURN CLIP

Clips melt away under intense heat.
ClarkDietrich aluminum burn clips are used as part of the H-stud area-separation wall assembly and are designed to melt and break away when exposed to fire. The clips are used to hold the area-separation wall assembly in place at the floor, roof, and truss line between adjacent units. Should a fire break out in one unit, the Aluminum Burn Clips on the fire-ridden side of the area-separation wall will melt, allowing the wall structure for that side to collapse. The burn clips on the non-fire side will remain intact and hold the area-separation wall in place as a barrier to contain the fire within the unit of origin.

Note: Check listed fire assembly for details of construction, thickness and length of required burn clips.

INSTALLATION PROCEDURES

1. Attach an aluminum burn clip to the completed area-separation wall assembly.
2. One clip should be located at each H-stud on both sides of the wall.
3. Attach the aluminum burn clip to the H-stud with a screw.
4. Attach to the adjacent framing with a screw or a nail, as applicable.
The technical content of this literature is effective 04/09/20 and supersedes all previous information. The technical content of this literature is effective 04/09/20 and supersedes all previous information. Pub. No. CD-SHAFTWALL 04/20

ClarkDietrich Building Systems has prepared this literature with the utmost diligence and care for accuracy and conformance to standards. ClarkDietrich intends this information to be accurate, informative, and helpful as a selection guide for choosing ClarkDietrich Building System products. However, this information is only to be used for guidance and is not intended to replace the design, drawings, specifications, and decisions of a professional architect or engineer.

ClarkDietrich Building Systems reserves the right to modify or change any information contained in this literature without notification.

ClarkDietrich Building Systems is a proud member of the Steel Framing Industry Association (SFIA).

ClarkDietrich Engineering Services.
A full spectrum of solutions.

Toll-Free Phone: 877.832.3206
Toll-Free Fax: 877.832.3208
Technical Services: 888.437.3244
Email: engineering@clarkdietrich.com

Texas Pasadena
P 281.383.1617

Florida Dade City
P 352.518.4400

California Riverside
P 951.360.3500

California Sacramento
P 951.360.3500

Connecticut Bristol
P 866.921.0023

Florida Dade City
P 352.518.4400

Georgia McDonough
P 678.304.5500

Illinois Rochelle
P 800.659.0745

Maryland Baltimore
P 410.477.4000

Missouri O'Fallon
P 636.300.1411

Ohio Vienna
P 330.372.4014

Ohio Warren-East
P 330.372.5564

Texas Dallas
P 214.350.1716

Toll-Free Fax: 877.832.3208

Technical Services: 888.437.3244
Email: engineering@clarkdietrich.com

Central

Ontario

Central

West

East

South

CARLSBAD, CA

P 866.638.1908

Toll-Free Phone: 877.832.3206

Technical Services: 888.437.3244
Email: engineering@clarkdietrich.com

Central

Ontario

Central

West

East

South

Toll-Free Phone: 877.832.3206

Technical Services: 888.437.3244
Email: engineering@clarkdietrich.com

Central

Ontario

Central

West

East

South

The technical content of this literature is effective 04/09/20 and supersedes all previous information. Pub. No. CD-SHAFTWALL 04/20